Сегмент и сектор

Площадь сектора круга и площадь сегмента учить не нужно! Дорогие друзья! Вы, наверное, не раз просматривали справочник с математическими формулами, и, наверняка, возникала мысль: «Да разве возможно их все выучить?». Скажу вам, что возможно, но зачем? Зачем забивать голову массой формул, постоянно повторять их, ужасаться тому, что какую-то забыл и снова повторять? Не надо!

На самом деле достаточно запомнить треть всех формул, базовых формул или ещё меньше. Далее вы поймёте о чём идёт речь. Все остальные формулы можно быстро вывести, зная основу, применяя логику, и запомнив принципы, которым нужно следовать.

Приведу пример, существует 32 формулы приведения, учить их – это бессмысленное занятие. Как быстро вспомнить любую из них — изложено в статье « Формулы приведения » , посмотрите.

В этой статье мы рассмотрим, как быстро восстановить в памяти формулы площади сектора круга, площади его сегмента, длину дуги окружности. Именно эти формулы понадобятся для решения ряда по планиметрии, которые разберем в следующей статье. Итак, «базовые» формулы, их нужно выучить и знать!

Площади круга (формула):

Формула длины окружности:

Изобразим сектор, соответствующий определённому центральному углу n:

Рассуждаем логически: если площадь круга равна S= ПR 2 , то площадь соответствующая сектору в один градус будет равна 1/360 от площади круга (мы знаем, что вся окружность — это угол в 360 градусов), то есть

Далее понятно, что площадь сектора, соответствующая центральному углу в n градусов равна произведению одной тристашестидесятой площади круга и центрального угла n (соответствующего сектору), то есть

Вот вам и формула площади сектора.

Или можно выстроить рассуждение следующим образом:

Сектор в 1 градус — это 1/360 часть круга, соответственно сектор в n градусов — это n/360 часть круга. То есть площадь сектора будет равна произведению площади круга и этой части:

Далее найдём площадь сегмента.

Всё просто. Необходимо из площади сектора вычесть площадь треугольника (он обозначен жёлтым цветом). Площадь треугольника, как мы знаем, равна половине произведения соседних сторон на синус угла между ними (эту формулу нужно знать, она не сложная). В данном случае это:

Читайте также:  Воспалительный процесс слизистой оболочки

Вот вам и площадь сегмента!

Площадь сегмента, где центральный угол больше 180 градусов находится просто:

Из площади круга вычитаем площадь полученного нами сегмента:

Угол 360 – n градусов это угол, который соответствует изображённому сектору (жёлтый цвет):

То есть, другими словами, к его площади мы прибавляем площадь треугольника и получаем площадь оговоренного сегмента.

Аналогичным образом определяем длину дуги окружности. Как уже сказано, длина окружности равна:

Значит, длина дуги окружности соответствующая одному градусу будет равна одной тристашестидесятой от 2πR, то есть

Далее понятно, что длина дуги, соответствующая центральному углу в n градусов равна произведению одной тристашестидесятой длины окружности и соответствующему углу, то есть

Получили длину дуги окружности. Конечно, данную информацию учителя дают ученикам, и ничего такого секретного вы не узнали. Но, уверен, статья принесёт вам пользу.

Повторюсь, что самое главное — знать формулы площади круга и длины окружности, а далее работает только логика.

Предлагаю посмотреть дополнительный урок Дмирия Тарасова на эту тему. Рассматриваются формулы длины дуги окружности и площади сектора, где центральный угол задан в радианной мере.

Основные определения и свойства. Число π
Формулы для площади круга и его частей
Формулы для длины окружности и ее дуг
Площадь круга
Длина окружности
Длина дуги
Площадь сектора
Площадь сегмента

Основные определения и свойства

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки – центра окружности

Часть окружности, расположенная между двумя точками окружности

Конечная часть плоскости, ограниченная окружностью

Часть круга, ограниченная двумя радиусами

Часть круга, ограниченная хордой

Выпуклый многоугольник, у которого все стороны равны и все углы равны

Около любого правильного многоугольника можно описать окружность

Фигура Рисунок Определения и свойства
Окружность
Дуга
Круг
Сектор
Сегмент
Правильный многоугольник
Окружность

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки – центра окружности

Дуга

Часть окружности, расположенная между двумя точками окружности

Круг

Конечная часть плоскости, ограниченная окружностью

Сектор

Часть круга, ограниченная двумя радиусами

Сегмент

Часть круга, ограниченная хордой

Правильный многоугольник

Выпуклый многоугольник, у которого все стороны равны и все углы равны

Около любого правильного многоугольника можно описать окружность

Определение 1 . Площадью круга называют предел, к которому стремятся площади правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.

Читайте также:  Таблетки от живота при месячных список

Определение 2 . Длиной окружности называют предел, к которому стремятся периметры правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.

Замечание 1 . Доказательство того, что пределы площадей и периметров правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон действительно существуют, выходит за рамки школьной математики и в нашем справочнике не приводится.

Определение 3 . Числом π (пи) называют число, равное площади круга радиуса 1.

Замечание 2 . Число π является иррациональным числом, т.е. числом, которое выражается бесконечной непериодической десятичной дробью:

Число π является трансцендентным числом, то есть числом, которое не может быть корнем алгебраического уравнения с целочисленными коэффициентами.

Формулы для площади круга и его частей

,

где R – радиус круга, D – диаметр круга

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Числовая характеристика Рисунок Формула
Площадь круга
Площадь сектора
Площадь сегмента
Площадь круга

,

где R – радиус круга, D – диаметр круга

Площадь сектора

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Площадь сегмента

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Формулы для длины окружности и её дуг

где R – радиус круга, D – диаметр круга

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Числовая характеристика Рисунок Формула
Длина окружности
Длина дуги
Длина окружности

где R – радиус круга, D – диаметр круга

Длина дуги

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Площадь круга

Рассмотрим две окружности с общим центром ( концентрические окружности ) и радиусами радиусами 1 и R , в каждую из которых вписан правильный n – угольник (рис. 1).

Обозначим через O общий центр этих окружностей. Пусть внутренняя окружность имеет радиус 1 .

Поскольку при увеличении n площадь правильного n – угольника, вписанного в окружность радиуса 1 , стремится к π , то при увеличении n площадь правильного n – угольника, вписанного в окружность радиуса R , стремится к числу πR 2 .

Таким образом, площадь круга радиуса R , обозначаемая S , равна

Длина окружности

то, обозначая длину окружности радиуса R буквой C , мы, в соответствии с определением 2, при увеличении n получаем равенство:

Читайте также:  Лапароскопия на какой день цикла

откуда вытекает формула для длины окружности радиуса R :

Следствие . Длина окружности радиуса 1 равна 2π.

Длина дуги

Рассмотрим дугу окружности, изображённую на рисунке 3, и обозначим её длину символом L(α), где буквой α обозначена величина соответствующего центрального угла.

В случае, когда величина α выражена в градусах, справедлива пропорция

из которой вытекает равенство:

В случае, когда величина α выражена в радианах, справедлива пропорция

из которой вытекает равенство:

Площадь сектора

Рассмотрим круговой сектор, изображённый на рисунке 4, и обозначим его площадь символом S (α) , где буквой α обозначена величина соответствующего центрального угла.

В случае, когда величина α выражена в градусах, справедлива пропорция

из которой вытекает равенство:

В случае, когда величина α выражена в радианах, справедлива пропорция

из которой вытекает равенство:

Площадь сегмента

Рассмотрим круговой сегмент, изображённый на рисунке 5, и обозначим его площадь символом S (α), где буквой α обозначена величина соответствующего центрального угла.

Поскольку площадь сегмента равна разности площадей кругового сектора MON и треугольника MON (рис.5), то в случае, когда величина α выражена в градусах, получаем

В случае, когда величина α выражена в в радианах, получаем

Свойства

Длина дуги сегмента круга рассчитывается также как и длина дуги сектора – умножением радиуса на центральный угол сектора: P=αr

Если провести из центра окружности перпендикуляр к хорде, то мы получим прямоугольный треугольник внутри равнобедренного, образованного радиусами. Половина хорды в таком треугольнике является катетом, противолежащим половинному углу α. Зная радиус, можем найти хорду через синус половинного угла. (рис. 141) c/2=r sin⁡〖α/2〗 c=2r sin⁡〖α/2〗

Высота сегмента круга равна разности радиуса и высоты равнобедренного треугольника, являющейся также катетом прямоугольного треугольника. Так как катет, выраженный через радиус, равен косинусу половинного угла, то найти высоту сегмента можно по следующей формуле. (рис.142) h=r-H=r-r cos⁡〖α/2〗=r(1-cos⁡〖α/2〗 )

Площадь сегмента круга всегда равна разности площади сектора круга и площади равнобедренного треугольника, образованного радиусами и хордой. Так как площадь сектора круга равна полупроизведению квадрата радиуса на центральный угол, а площадь равнобедренного треугольника равна половине квадрата стороны, то есть радиуса, умноженной на синус угла между ними, то формула площади сегмента круга получает следующий вид. S=S_сек-S_тр=(r^2 α)/2-r^2 sin⁡α=1/2 r^2 (α-sin⁡α )

Оцените статью
MyPochki.ru
Добавить комментарий

Adblock detector